Seat No.	Enrolment No.
Seat No.	Lindinent No.

CVM UNIVERSITY

M.Sc. (Industrial Chemistry), Semester- 3 November - 2021

Subject: 101310303—Spectroscopy & Instrumental Techniques
Tuesday, 16th November – 2021

Tir	ne: (01:30 P.M. to 03:30 P.M.	Т	otal Marks: 60
No	ii)	Attempt all the questions. Figures to right indicate full n) Draw neat diagrams wherever	narks. er it requires.	
 Q-1	1.	Answer the following Multip	ple Choice Questions. molecule in mass spectrometry.	Marks (12)
		a) M*	c) M ^{.+}	
		b) (M+H) ⁺	d) All of these	
	2.	Soft ionization technique is	used intechnique.	
		a) MS-MS	c) Quadrapole	
		b) Time of flight	d) single focusing	
	3.	goes to second vibration en a) Combination b) Overtone	c) Fermi d) All of these	ectly
	4.	•	, then the sample is NMR	
		•	c) active	
	_	b) partially active	·	
	5.	•	s, transferring ΔE to a neighboring nucleus.	
		, ,	c) spin-spin	
		b) lattice-lattice	,	
	6.	Difference in frequency in p	pm (Hz) from TMS is	
		a) chemical shift	c) Shielding	
		b) De-shielding	d) anisotropic	
	7.	NMR spectroscopy is used	to find the presence of	
		a) ³ H b) ¹² C	c) ¹⁴ N d) None of these	
	8.	The column is in no a) polar	rmal phase chromatography. c) bi-polar	
	9.	b) non-polar Eddy diffusion arises from the	d) all of these ne magnitude of	
		a) path way	c) pressure	
		b) flow	d) temperature	

	10.	Gradient elution refers to							
		a) changing the solvent composition over time							
		b) changing the column temperature over time							
		c) column "bleed" as the temperature is ramped							
		d) reversed instead of normal phase LC							
	11.	is typically by far the strongest X-ray spectral line for an element bombarded							
		with energy sufficient to cause maximally intense X-ray emission.							
		a) L-alpha c) K-alpha							
		b) M-alpha d) N-alpha							
	12.	The rate of change of mass, dm/dt depends on the amount of sample present, and							
		the constant at the experimental temperature.							
		a) reaction rate c) pressure							
		b) temperature d) weight							
Q-2		Answer the following short questions. (Any Eight)	(16)						
	1.	What is the possible vibration frequency of alkenes and primary amine?							
	2.	Give the equation of resolution in the mass spectrogram.							
	3.	Give cleavage of 1-pentene.							
	4.	What is Hooke's law?							
	5.	Define shielding-De-shielding.							
	6.	What are the solvents used in NMR?							
	7.	Define: Theoretical Plate, Partition ratio.							
	8.	What is a guard column?							
	9.	How to calibrate TGA instrument?							
	10.	What is Moseley's law?							
Q-3		Draw a schematic diagram of dispersive double beam IR spectrometer and explain various parts of the instrument	(80)						
		OR	(00)						
Q-3		Explain with example the basic principle of Mass Spectrometer and explain with diagram components of the double-focusing mass spectrometer.	(80)						
Q-4		What is the condition for NMR spectroscopy? Explain with the figure the absorption phenomenon and relaxation process in NMR. OR	(80)						
Q-4		Explain with figure instrumentation of NMR.	(80)						
Q-5		Give the classification of chromatography. Explain the theory of elution chromatography.	(80)						
		OR							
Q-5		Draw a schematic diagram of HPLC and explain in brief different parts of it. What is normal phase and reverse phase chromatography?	(80)						
Q-6		Draw a schematic diagram of the TGA instrument and explain various parts of it. Show the thermal decomposition of barium perchlorate trihydrate.	(08)						
		OR	/a.a.						
Q-6		Write the principle of XRD. Briefly explain the various application of XRD.	(80)						
		Page	2 of 2						
		All the Best!							

Seat No.	Enrolment No.
JUNE 1 101	

CVM UNIVERSITY EXTERNAL EXAMINATION M.SC. INDUSTRIAL CHEMISTRY (THIRD SEMESTER)

101310304: Process Safety Management and Transportation of Fluids Wednesday, 17th November - 2021

Time: 1:30 pm to 3:30 pm

Total Marks: 60

Q. 1	1	Answer the following multiple choice questions. Managing exposure is part of							
	1.	a. Engineering control			b. Hierarchy of control				
	2.	Frostbite is the result of e	extreme expos	sure of					
		a. Cold stress		b. Work stress					
		c. Psychological stress		d. Heat stress					
	3.	Mineral oil islic	ηuid.						
		a. Combustible		c. Flammable	d. High volatile				
	4.	due to pressure increase							
		is							
		a. Attenuator		b. Blow off cock					
		c. Rupture disc		d. Relief valve					
	5. Explosive dusts to be stored as slurry is an example of method.								
		a. Adequate training b. Limitation c. Attenuation d. Simplification							
	6.	en flame is called							
		a. Flash point		b. Adiabatic tempera	ature				
		c. Fire point		d. Auto ignition tem	-				
	7.	7. The machine which raises the liquid from lower level to higher level using centr							
		a. Wire		b. Volute casing					
		c. Centrifugal pump		d. Ostwald viscome					
	8.	Which of the following i							
		a. Notch b. Ventu		c. Orifice meter	d. None of these				
	9. An ideal fluid is								
		a. Highly viscous		b. Frictionless & inc	•				
		c. Obey Newton's law v		d. Always in turbulent range					
	10.	Difference between theo							
			b. Lift	c. Slip	d. NPSH				
	11.	Which of the following							
			b. Plunger	c. Centrifugal	d. None of these				
	12.								
		a. Pressure head		b. Velocity head					
		c. Momentum		d. Gravity head					

Attempt any eight of the following.

Define the term attenuation with example.

Q.2

1.

[16]

CVM UNIVERSITY

M.Sc. (Industrial Chemistry) Semester-III Examination-NOV '2021

Thursday, 18/11/2021 101310305: Pharmaceutical Technology

01:30 PM to 03:30 PM Total Marks: 60

Note:			ot all questions. s to the right indicate Full marks.						
(Q. 1		Answer the following multiple choice questions.	(12)					
		(1)	is the most promising form of therapy	` ,					
		()	A. Physiotherapy B. Chemotherapy C. Radiotherapy D. Surgery						
		(2)	The most common targets for drugs – receptors are located at in the						
		, ,	body.						
			A. Cellular level B. Muscular level C. Tissue level D. None of these						
		(3)	trials are conducted on animals						
			A. Phase I B. Phase II C. Phase III D. Preclinical						
		(4)	In tablets the drug is released slowly over extended time period						
			A. Delayed release B. Sustained release						
			C. Dispersible tablet D. Chewable tablet						
		(5)	The lower weight limit for formulation of a tablet is usually						
			A. 5 mg B. 25 mg C. 50 mg D.75 mg						
		(6)	There are standard capsule sizes, and the largest capsule size						
			considered suitable for oral use is size						
			A. 00, 8 B. 8, 000 C. 8, 00 D. 8, 0						
		(7)	Novel drug delivery system improves						
			A. Potency B. Efficient use of drug						
		(0)	C. Therapeutic effect D. All of these						
		(8)	Microspheres are the free flowing powder having particle size less than microns						
			A. 100 B.200 C. 300 D. 400						
		(9)	are the matrix system in which the drug is uniformly dispersed						
		(2)	A. Nanospheres B. Nanocapsules						
			C. Hard gelatin capsules D. All of these						
		(10)	is the heart and soul of quality control						
		()	A. QC B. GMP C. GLP D. QA						
		(11)							
		• ′	A. Q1 B. Q.3 C.Q.5 D. Q.7						
		(12)							
			A. GLP B. GMP C. SOP D. QA						
	Q.2		Attempt any eight of the following short questions.						
		(1)	Define and differentiate the terms drugs and pharmaceuticals						
	•	(2)	What is polymorphism?						
		(3)	What is bioavailability of drug?						
		(4)	Define the term tablet and enlist its advantages						
		(5)	Differentiate between creams and ointments Differentiate between Type A and Type P. Calatin						
		(6)	Differentiate between Type A and Type B Gelatin						
		(7) (8)	What is ICH guideline? Define the term GLP						
		(8)	What is control drug delivery system?						
		(9) (10)	Differentiate between single punch and rotary tableting machines						
		(10)	Differentiate octaven single punen and rouny tableting machines						

Q. 3	What is pharmacokinetics and Pharmacodynamics? Discuss in brief the	(08)
	ADME process and various drug actions on the body.	` ′
	OR	
Q.3	What is Preformulation? Explain in detail about various studies carried out under preformulation.	(08)
Q. 4	Explain the different types of tablets in brief and write a detailed note on Effervescent tablets and Lozenges	(08)
	OR	
Q. 4	Explain the term excipient. Write a detailed note on various excipients used in pharma industries with special emphasis on their functions and examples.	(08)
Q. 5	What is microencapsulation? Discuss in detail about the various methods for encapsulation.	(08)
	OR	
Q. 5	What are Nano particles? Write a detailed note on Nano particles with special emphasis on their production and applications	(08)
Q. 6	What is QA? Discuss the salient features of QA	(08)
_	OR	(-)
Q. 6	What is GMP? Discuss in brief about the components included in GMP guidelines.	(08)

Best of Luck

Seat No.	Enrollment No.

THE CHARUTAR VIDYA MANDAL UNIVERSITY

M.Sc. Industrial Chemistry – SEMESTER 3 WINTER 2021 EXAMINATION

			WIIN	1 LK 2021 F	ıΛΑ	MINATION		
Co	urse '	Title: In	dustrial P	olymers				
Co	urse	Code: 10	01310308					
To	tal Pı	inted Pa	ages: 02					
		11/2021	Ü	Time: 01.30	om to	03.30 pm	Maximum Marks	s: 60
Inst	ruction	s:						
	AttNu	empt all que mbers to the	e right indicate	full marks for eac nerever necessary.		stion.		
Q. 1	(1)	The hachlorine a. D	rdness and s atom caused ecreases	by the inter-cl	PVC hain a b.	C polymer is due attraction: Increases	to the presence of	(12)
	(2)	The preprety			-	Can't say antities in the p Volatility	olymer renders its	
	(3)	c. Fl	ames retarda ny1 acetate)		d.	Increased volatil	lity ings and extrusions	
		c. H	igh cold flow arshness		d.	Low cold flow Flammability		
	(4)	a. C		pic acid synthes d cyclohexanol nd n-Octane				
	(5)	and a correplacing	nsequent decre	ease in softening	poin		e interchain attraction e can be decreased by	
	(6)	Nylon 6 a. He	is prepared b			Hexamethylene Sebacic acid Caprolactum	diamine and	
	(7)	Length-d for therm	iameter ratio a oplastic is ran 0:4	in most commo			w extruders common	
	(8)	Mixer scr a. B c. Re	rews have mix reak up the po	ing sections wh lymer aminar flow of	ich ar b.	re designed as mech Mix the polymer All the above		

	(9)	In Sin	_	flight,	two	stage	extrus	ions	with	mixing section the degassing zone is	
		a.	At 1	the pl	ace v	vhere	hoppe	er is	b.	At the place where die is installed	
		c.	At t			ere th	ne extr	uder	d.	Can't say	
	(10)	The to	empe	rature	regio	n who	ere the	poly	mer 1	transitions from a hard, glassy material	
	,	to a so					s terme	d as:			
		a.			emper				b.	Glass Transition temperature (Tg)	
		c.			mpera				d.	Vulcanization	
	(11)	The F				ntain	randor	nly p	laced	d:	
		a.		ine gr						H-atom around double bond	
		c.			group				d.	Aldehyde group at double bond	
	(12)	The r					ychloro	prene		ue to:	
		a.			group				b.	Methyl group	
		c.		dic gr					d.	Chlorine atom	46
Q.2							follow				(16)
_	(1)	Give	the	reaso	n in 1	the p	olyme	rizat	ion 1	reactions the heat of polymerization	
	` '	must	be c	areful	lly co	ntrol	led.				
	(2)						PVC a	nd Pl	PVC	,	
	(3)						Diagra				
	(4)								ners .	& plastomers.	
										mides are not considered as good	
	(5)	insul		icas	OII W	ily c	inpilat	ie p	oryar	mildes are not constanted as good	
	(6)			n ath c	A to 1	n#0170	nt tha	nran	atur	e destabilization in elastomer.	
	(6)								iatui	e destabilization in clastomer.	
	(7)						of Tacl	κ.			
	(8)	Give				mou	ia.				
	(9)	Wha									
	(10)	Wha	t is b	low n	nould	ling'?					
Q. 3		Give	the	manı	ıfactu	ıring	proce	ss of	pol	lyethylene by Ziegler processes and	(08)
							lyethy				
		•				-			OR		(0.0)
Q.3											(08)
Q. 4											(08)
		proce	ess w	ith it	s adva	antag	es and	disa		ntages.	
									OR		
Q. 4											(08)
Q. 5									•		(08)
		sche	matic	: diag	ram.	Give	the ap	plica	ition	of styrene.	
									OR		
Q. 5		Elab	orate	the r	nanui	factu	ring pr	oces	s of	Polyurethane elastomers by one shot	(08)
		proc	ess.								
Q. 6		Reci	proc	ating	screv	v inje	ection	mou	ıldin	g and also give the advantages and	(08)
			-	_		-	n mou				. ,
				J	3				OR		
Q. 6		Writ	ean	ote o	n Con	npres	sion n	nould			(08)
۷. ۵			J 11			F			·		(50)

Page 2 of 2
